
1

FACULTY OF ENGINEERING

STUDY COURSE DESCRIPTION

Course Title: Basics of Programming I

Course code (LAIS): DatZB018
Study programme: Information Technologies

Level of Study

programme:

 1st level professional higher education

 Professional Bachelor

 Professional Master

 Academic Master

 PhD level

Type of Study programme:

 Compulsory course (Part A)

 Professional specialization courses (Part B, compulsory)

 Professional specialization optional courses (Part B, optional)

 Elective courses (Part C)

Course Workload: Credits1
Academic

hours

Contact hours Independent

work hours

Full time: 6 150 60 90

Part time: 6 150 18 132

Course Author/ Tutor:

Medjon Hysenaj

Associate visiting professor, Ph.D.

e-mail: medjon.hysenaj@unishk.edu.al

Study Form: Full time studies, part time studies

Study year, semester: 1st year, 1st semester

Language: English

Prerequisites for the

Course:
-

Course Summary:

The aim of this course is to introduce students to structured problem-solving

techniques, fundamental principles of algorithms, and object-oriented

programming (OOP). This foundational course provides students with the skills

required to analyze and solve programming challenges, fostering the ability to

write efficient and maintainable code in Java. Students will gain a comprehensive

understanding of programming constructs, including data types, control structures,

arrays, classes, and file processing. By completing this course, students will be

equipped to continue learning more advanced programming languages and

concepts in future studies.

By the end of the course, students will be able to:

• Understand the basics of Java programming and object-oriented paradigms.

• Utilize simple data types, variables, and arrays effectively.

• Perform operations using operators and control statements (e.g., loops,

conditions).

• Develop and use classes, objects, and dynamic collections.

• Handle data input, error management, and file processing.

• Follow principles of good-quality programming.

• Create and debug simple Java applications.

Assessment: Exam

Requirements for Credits:

Final grade is calculated of:

Class Participation and Interactive Tasks: 10%
Homework Assignments: 20%
Projetcs Coding Task: 40%
Final Exam: 30% Exam is calculated as THEORY x 0.4 + CODE_READ x 0.2 + CODING x
0.4

1 Eiropas kredītpunktu pārneses un uzkrāšanas sistēmas studiju uzskaites vienība

mailto:vards.uzvards@va.lv

2

Note: A minimum of 50% in the final exam is required to pass the course.

Abiding by the Academic

Ethics

Students must abide by the academic and research ethics, Vidzeme University of
Applied Sciences Ethics Regulations, incl.:
- study papers must be independently developed;
- the study work should reference all statements, ideas and data used that have
been authored by someone else;
- appropriate data acquisition methods should be used in the acquisition of data,
the research ethics must be respected, empirical data must be collected
independently and cannot be distorted or falsified;
- the examination must be carried out by the student independently, without the
use of supporting materials and/or consultations with other students, unless the
lecturer states otherwise.
In the event of non-compliance with the academic and research ethics,
punishment is imposed in accordance with the ViA Ethics Regulations and the
study course must be re-taken, unless the punishment is exmatriculation.

Learning Outcomes; the

evaluation methods and

criteria

Learning Outcomes The evaluation methods and criteria

Knowledge

Basic principles of Java programming,

including the implementation of simple

data types, variables, arrays, and their

applications across different

programming languages. Core

concepts of methods, clean

programming, and defensive

programming techniques to prevent

code vulnerabilities and ensure

maintainability. Fundamental

understanding of objects, classes,

inheritance, and encapsulation,

enabling students to design reusable

and scalable solutions. Overview of

error handling and file processing,

focusing on managing program flow

and data storage in real-world

scenarios. Familiarity with

programming tools and environments,

such as integrated development

environments (IDEs), to streamline

coding tasks.

Code reading and writing tasks,

lectures, practical assignments, and

group discussions.

Skills

Ability to create method-based

programs to solve fundamental

programming problems, using both

procedural and object-oriented

paradigms.

Practical tasks, hands-on coding

assignments, discussions, tests, coding

projects, and interactive lectures.

Proficiency in writing clean, modular,

and well-documented code that follows

industry best practices and design

patterns.

Practical tasks, hands-on coding

assignments, discussions, tests, coding

projects, and interactive lectures.

Capability to develop programs that

handle input validation, error

management, and file processing,

ensuring robustness and reliability.

Practical tasks, hands-on coding

assignments, discussions, tests, coding

projects, and interactive lectures.

Competence in implementing dynamic

collections and algorithms to solve

data-driven problems effectively.

Practical tasks, hands-on coding

assignments, discussions, tests, coding

projects, and interactive lectures.

Competency

Independently analyze, design, and

implement method-based programs to

address both simple and complex data-

driven challenges.

Practical tasks, discussions, tests,

coding projects, course work, and the

final exam.

Apply object-oriented principles such as

encapsulation, inheritance, and

Practical tasks, discussions, tests,

coding projects, course work, and the

3

polymorphism to create maintainable

and extensible software solutions.

final exam.

Solve real-world programming

problems using structured approaches,

integrating algorithms and data

structures effectively.

Practical tasks, discussions, tests,

coding projects, course work, and the

final exam.

Course Compulsory

literature:

All the compulsory and additional literature is available in the course
materials on the school’s web platform and external sources (Youtube)

Course additional

literature:

-

Course confirmation date: 08.12.2022

Date of course description

update:
09.01.2025

Study Course Plan for Full Time Students:

Date Theme

Academic hours Study Form/
Organization of
independent work of
students and task
description

Contact
hours

Independen
t work
hours

The date is
specified before
the
implementation
of the course

 Introduction to Programming, Java,
OOP, and the Purpose of
Programming Languages

5 7
Lecture, individual
research on programming
evolution

 Simple Data Types, Variables, Arrays,
and Differences Across Programming
Languages

5 7 Lecture, hands-on coding
task to implement
variable operations

 Operations and operators 5 7 Lecture, coding exercise
on arithmetic and logical
operations

 Methods 5 7 Lecture, create modular
code by designing
functions

 Control Keywords: break, continue,
return

5 7 Lecture, interactive
problem-solving with real-
life scenarios

 String operations 5 7 Lecture, project task to
manipulate and analyze
strings

 Data Input, Validation, and Error
Handling

5 7 Lecture, practical
debugging and error-
trapping task

 Classes and objects 5 7 Lecture, code
implementation of a
class-based program

 Dynamic collections (e.g., Lists,
Maps)

4 7 Lecture, exercise on
managing and iterating
over collections

 File processing 4 7 Lecture, task to create
programs reading/writing
files

 Good Quality Programming Principles
(Clean Code)

4 7 Lecture, refactor existing
code to meet quality
standards

 Presentation of course work 4 13 Seminar, feedback on
course projects

 Exam 4 Theoretical discussion,
written and coding exam

Hours total: 60 90

Study Course Plan for Part Time Students:

Date Theme Academic hours Study Form/

4

Contact
hours

Independen
t work
hours

Organization of
independent work of
students and task
description

The date is
specified before
the
implementation
of the course

 Introduction to Programming, Java,
OOP, and the Purpose of
Programming Languages

2 16
Lecture, individual
research on programming
evolution

 Simple Data Types, Variables, Arrays,
and Differences Across Programming
Languages

2 16 Lecture, hands-on coding
task to implement
variable operations

 Operations and operators 2
10

Lecture, coding exercise
on arithmetic and logical
operations

 Methods 2
10

Lecture, create modular
code by designing
functions

 Control Keywords: break, continue,
return

2
10

Lecture, interactive
problem-solving with real-
life scenarios

 String operations 1
10

Lecture, project task to
manipulate and analyze
strings

 Data Input, Validation, and Error
Handling

1
10

Lecture, practical
debugging and error-
trapping task

 Classes and objects 1
10

Lecture, code
implementation of a
class-based program

 Dynamic collections (e.g., Lists,
Maps)

1
10

Lecture, exercise on
managing and iterating
over collections

 File processing 1
10

Lecture, task to create
programs reading/writing
files

 Good Quality Programming Principles
(Clean Code)

1
10

Lecture, refactor existing
code to meet quality
standards

 Presentation of course work 1
10 Seminar, feedback on

course projects
 Exam 1 Theoretical discussion,

written and coding exam

Hours total: 18 132

